How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers

نویسندگان

  • Yu Wang
  • Yang Feng
  • Zhe Hong
  • Ryan Berger
  • Jiebo Luo
چکیده

Polarization in American politics has been extensively documented and analyzed for decades, and the phenomenon became all the more apparent during the 2016 presidential election, where Trump and Clinton depicted two radically different pictures of America. Inspired by this gaping polarization and the extensive utilization of Twitter during the 2016 presidential campaign, in this paper we take the first step in measuring polarization in social media and we attempt to predict individuals’ Twitter following behavior through analyzing ones’ everyday tweets, profile images and posted pictures. As such, we treat polarization as a classification problem and study to what extent Trump followers and Clinton followers on Twitter can be distinguished, which in turn serves as a metric of polarization in general. We apply LSTM to processing tweet features and we extract visual features using the VGG neural network. Integrating these two sets of features boosts the overall performance. We are able to achieve an accuracy of 69%, suggesting that the high degree of polarization recorded in the literature has started to manifest itself in social media as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Will Sanders Supporters Jump Ship for Trump? Fine-grained Analysis of Twitter Followers

In this paper, we study the likelihood of Bernie Sanders supporters voting for Donald Trump instead of Hillary Clinton. Building from a unique time-series dataset of the three candidates’ Twitter followers, which we make public here, we first study the proportion of Sanders followers who simultaneously follow Trump (but not Clinton) and how this evolves over time. Then we train a convolutional ...

متن کامل

Deciphering the 2016 U.S. Presidential Campaign in the Twitter Sphere: A Comparison of the Trumpists and Clintonists

In this paper, we study follower demographics of Donald Trump and Hillary Clinton, the two leading candidates in the 2016 U.S. presidential race. We build a unique dataset US2016, which includes the number of followers for each candidate from September 17, 2015 to December 22, 2015. US2016 also includes the geographical location of these followers, the number of their own followers and, very im...

متن کامل

Catching Fire via "Likes": Inferring Topic Preferences of Trump Followers on Twitter

In this paper, we propose a framework to infer the topic preferences of Donald Trump’s followers on Twitter. We first use latent Dirichlet allocation (LDA) to derive the weighted mixture of topics for each Trump tweet. Then we use negative binomial regression to model the “likes,” with the weights of each topic serving as explanatory variables. Our study shows that attacking Democrats such as P...

متن کامل

Rumor Detection on Twitter Pertaining to the 2016 U.S. Presidential Election

The 2016 U.S. presidential election has witnessed the major role of Twitter in the year’s most important political event. Candidates used this social media platform extensively for online campaigns. Meanwhile, social media has been filled with rumors, which might have had huge impacts on voters’ decisions. In this paper, we present a thorough analysis of rumor tweets from the followers of two p...

متن کامل

Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach

Gender is playing an important role in the 2016 U.S. presidential election, especially with Hillary Clinton becoming the first female presidential nominee and Donald Trump being frequently accused of sexism. In this paper, we introduce computer vision to the study of gender politics and present an image-driven method that can measure the effects of gender in an accurate and timely manner. We fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017